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Abstract 
Let AOB  be a triangle in the three dimensional Euclidean space R

3
. When we look at this triangle 

from various viewpoints, the angle AOB  changes its appearance, and its 'visual size' is not 

constant. This visual angle is realized on the unit sphere S
2 

centered at O . In this paper, we will 

investigate the contours of visual size in the unit sphere. Several geometric properties and a 

stochastic property are presented. 

 

1. Introduction   
We see various angles in our daily lives. Each angle has a certain size, however, its appearance 

changes according to our viewpoint. We call the appearance visual angle. Note that visual angle in 

this paper is not the angle a viewed object subtends at the eye which is called the object’s angular 

size. This visual angle is determined by the true size of the angle and the position of the observer. 

The motivation of this research is to derive information about the relation between the angle and the 

observer from the visual angle.  

 

Let AOB  be a fixed angle determined by three points O , A , and B  in the three dimensional 

Euclidean space R
3
. When we look at this angle, its appearance changes according to our viewpoint.  

The visual angle of AOB  from a viewpoint P  is defined as follows: 

 

Definition 1.1(Visual Angle and Visual Size)  Let AOB  be a fixed angle determined by three 

points O , A , and B  in the three dimensional Euclidean space R
3
. For a viewpoint P , let us denote 

by  

AOBP
 

the dihedral angle of the two faces OAP  and OBP  of the (possibly degenerate) tetrahedron POAB .  

This angle AOBP
 is called the visual angle of AOB  from the viewpoint P . Its size (measure) 

is called the visual size of AOB  from P , and denoted by the same notation AOBP
 as the visual 

angle without any confusion. 

 

For an angle with fixed size, its visual size can vary from 0  to  in radians depending on the 

viewpoint. We may suppose that two points A and B  lie on the unit sphere S
2
 centered at O (see, 

Figure 1.1). Then the spherical distance AB  between A  and B  is equal to AOB . (We denote the 

shortest geodesic connecting A  and B , and its length by the same notation AB .) In addition, let us 

assume that a viewpoint P  is also on S
2
. Then, notice that AOBP

 is equal to the interior angle 

P  of the spherical triangle APB , because the tangent plane of S
2
 at P  is orthogonal to the line 

OP .  



The Electronic Journal of Mathematics and Technology, Volume 2, Number 3, ISSN 1933-2823 

  

 

274 

 

  
Figure 1.1  Visual angle on the unit sphere. 

 

The aim of this paper is to study the following contours on S
2
: 

PC {:  S
2
   },| AOBAOB P

, 

where 0  and 0  (In the cases that 0  and , it is trivial that CC00  S
2

},{\ BA ). We can reduce the domain of  to ]2/,0( . In fact,  

PC {  S
2
   },| ** OBAOBA P , 

where *A  is the antipodal point of A , therefore, C  is essentially the same as C . Hence, let 

us suppose that 2/0  in the following argument. 

In Section 2, we will seek the algebraic expression of C  and several geometric properties of C . 

The stochastic property of C  will be reviewed (see [4] and [5]) in Section 3. Figures in this paper 

are drawn by geometry software Cabri II and Maple. 

 

2. Contour of visual angle on S
2
     

In plane geometry, for two points A  and B , the set of points P  for which the angle APB  equals 

2/  is a circle with diameter AB . More generally, the set of points P  for which the angle APB  

equals )2/(  is the union of two arcs passing through two points A  and B (Figure 2.1).  

 

 
 

Figure 2.1  The locus of the point P  such that APB  is constant. 
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Figure 2.2  Contours on the unit sphere( 3/ (left), 2/ (right)). 

 

The contours 
2/C  and C  are regarded as a natural extension of the above geometric figures to 

spherical geometry, however, they are not so simple (see, Figure 2.2). Set the two points A  and B  

on the equator of S
2 

(see, Figure 1.1) as follows: 

 

Theorem 2.1  For two points )0),2/sin(),2/(cos(A  and )0),2/sin(),2/(cos(B , the 

set C  of points ),,( zyxP  for which the angle APB  equals  ( AOBP
) on S

2 
satisfies 

the equations 

 
).0()cos1(sin)sincos2()cos1(sin)sin2(

),0()cos1(sin)sincos2()cos1(sin)sin2(
22

22

zzzy

zzzy
  (2.1) 

 

Proof. By the symmetry of S
2
, it is sufficient to prove the case that 0z . Apply the law of cosines 

for sides to the spherical triangle APB ([1] p.54): 

 cossinsincoscoscos baba   (2.2) 

where BPa  and APb . 

Since 
2

sin
2

coscos yxa  and 
2

sin
2

coscos yxb ,  

                                        (2.3) 

                                        (2.4) 

 

Using these equations above, let us show the equation sinsinsinsin zba . 

 
  

                                 

                                 

                                                                                                                           (by Equations (2.3) and (2.4)) 

                                  

                                  

 

Since 0,sin,sin,sin,sin zba , one has sinsinsinsin zba .  
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If 2/ , 

        
                                

                                

                                
                                   =  
hence, 

 ).cos1(sin)sincos2()cos1(sin)sin2( 22 zzy   (2.5) 

In the case that 2/ , bacoscoscos  by Equation (2.2). Combining this equation with 

Equation (2.3) one has 

 .cos1)cos1(2 22 zy   (2.6) 

This equation is a special case of Equation (2.5) with 2/ . This completes the proof.              

   
Figure 2.3  View of contours from x-axis( 3/ (left), 2/ (right)). 

 

Figure 2.3 shows the views of contours from x-axis. Theorem 2.1 indicates that C  is given as a 

part of intersection curves of elliptic cylinders and S
2
.  

Now, let us investigate geometric properties of C . First, let us focus on the relation between 

C  and C . In plane geometry, for two points A  and B , the set of points P  for which the 

angle APB  equals 6/  and the set of points P  for which the angle APB  equals 6/  make 

two circles as in Figure 2.1(right). A similar feature is shown in C  and C .  

 

Proposition 2.1  For 2/ , two sets C  and C  are complementary to each other, i.e., the 

set CC  satisfies  

).cos1(sin)sincos2()cos1(sin)sin2( 22 zzy  

 

Proof.  By Equations (2.1), the set C  satisfies 

).0()cos1(sin)sincos2()cos1(sin)sin2(

),0()cos1(sin)sincos2()cos1(sin)sin2(
22

22

zzzy

zzzy
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Hence the intersection curves of S
2
 and the elliptic cylinder defined by 

)cos1(sin)sincos2()cos1(sin)sin2( 22 zzy  

are divided into two parts, that is, the upper parts )0(z  are in C  and the lower parts )0(z  

are in C . In the same way, the intersection curves of S
2
 and the elliptic cylinder defined by 

)cos1(sin)sincos2()cos1(sin)sin2( 22 zzy  

are also divided into two parts. This completes the proof.                    

 

In the second place, let us investigate a geometric property of C . Figure 2.4 shows the views 

from z-axis. We can see that the red curves orthogonally intersect at the north pole N . 

                  
Figure 2.4  View of contours from z-axis( 3/ (left), 2/ (right)). 

 

Proposition 2.2  For any , the curve C  has singularities at the north and south poles with 

orthogonal tangent directions. 

 

Proof.  By the symmetry of S
2
, it is sufficient to prove the case of the north pole N . By Equation 

(2.1), the upper part of C  satisfies 

 cos1)cos1(2)cos2( 22 zyz .  (2.7) 

If 2/ , the equation above is 12 22 zy , that is, 022 yx . Hence C  is composed of 

two great circles which orthogonally intersect at N  as in Figure 2.4(right).  

If 2/ , squaring the both sides of Equation (2.7), 

 

 
equivalently, 

 

0)cos1()cos1()(sin2)(cos4 424222222 yxyxyx . 

 

In a neiborhood of N , x  and y  are sufficiently small, hence ignoring the higher order terms 22 yx , 
4x , and 4y  one also has 022 yx . This completes the proof.               

 

In the third place, let us investigate another geometric property of C  around two points A  and 

B . The next property is also true in Euclidean geometry. 
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Proposition 2.3  For any  and , the angle between the curve C  and the arc AB  at A  or B  is 

. 

 

Proof.  Let us calculate the angle at )0),2/sin(),2/(cos(A  under the case that 0z . By 

changing coordinates such as 

,

100

0)2/cos()2/sin(

0)2/sin()2/cos(

'

'

'

z

y

x

z

y

x

 

the first one of Equations (2.1) becomes  

)0'(0')sin(cos'')sin(sin)''(cossin 22 zzyxzy . 

In a neiborhood of )0,0,1()',','( zyx , 'y  and 'z  are sufficiently small and 'x  is nearly equal to 1, 

hence ignoring the higher order terms 2'y and 2'z , and substituting 1'x , one has ')(tan' yz . 

This completes the proof.          

 

Finally, let us investigate
2/C  (black curve in the left of Figure 2.3). The next proposition shows 

that 
2/C  is a one-parameter family of spherical conic on S

2
 (see, [3]). 

 

Proposition 2.4  For 2/ , 
2/C  is a spherical conic (a pair of spherical ellipses), i.e., 

 

where 
cos1

cos1
,0,

cos1

cos2
1F , 

cos1

cos1
,0,

cos1

cos2
2F , )())2/(tan(sin2 1l and 

*

1F  (resp. 
*

2F ) is the antipodal point of 
1F  (resp. 

2F ), respectively.  

 

Proof.  Let us show that ),,( zyxP  such that lPFPF 21
 satisfies Equation (2.6), i.e., 

.cos1)cos1(2 22 zy  

Let 
cos1

cos2
cos 1c  be the distance between 

1F  and the mid point of A  and B (the center of 

the ellipse). Then )sin,0,(cos1 ccF  and )sin,0,(cos2 ccF , and note that  

2

2

)cos1(

cos4
cos c     and    

2

2
2

)cos1(

)cos1(
sin c . 

Since lPFPF cos)cos( 21
 and 

,)sincos(1sin,sincoscos 2

11 czcxPFczcxPF  

,)sincos(1sin,sincoscos 2

22 czcxPFczcxPF  

one has 

))sincos(1)()sincos(1(cossincos 222222 czcxczcxlczcx . 
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Squaring the both sides of the equation above, 

)sincos(21)sincos(cos2cos 222222222 czcxczcxll , 

or equivalently, 

2
cos

2
sin

2
cossin

2
sincos 22222222 lll

cz
l

cx . 

Using the equations 
cos1

cos1

2
tan

2
sin 22 l

 and 
cos1

cos2

2
cos2 l

, 

cos1)cos1(2 22 zx , 

therefore,  

.cos1)cos1(2 22 zy  

In a similar way, it is showed that ),,( zyxP  such that lPFPF
*

2

*

1
 also satisfies the equation 

above. This completes the proof.                    

 

3. Stochastic property of visual angle     
In this section, let us introduce a stochastic property of visual angle. For a given angle AOB  in R

3
, 

take a random point P  distributed uniformly on the unit sphere S
2
 centered at O . Then the  

visual size AOBP
 is a random variable, which is called the random visual size of AOB .  

 

Theorem 3.1  For any angle AOB , the expected value of the random visual size AOBP
 is equal 

to the true size of AOB , that is,  

E( AOBP
)= AOB . 

 

Proof.  Let AOB  be an angle of size AOB , and let P  be a random point on the unit sphere S
2
 

centered at O . We may suppose that A  and B  lie on S
2
. Then the spherical distance AB  between 

A  and B  is equal to AOB  and recall that AOBP
 is equal to the interior angle P  of the 

spherical triangle APB .  

Let us assume that two points A  and B  are on the equator of S
2
. If it is proved that the expected 

value E( AOBP
) restricted to any fixed latitude meridian is equal to AOB , the proof of Theorem 

1 has completed. Hence, in the rest of the proof, let us restrict the random point P  to any fixed 

latitude meridian  

PL {:  S
2
   }| NOP , 

where N  is the north pole of S
2
.   

First, let us prove the case of nAOB /2  where n  is an integer greater than 1.  

Divide the equator into n  equal parts, 

./2113221 nAAAAAAAA nnn  

Then, for any point P , 

 .2113221 OAAOAAOAAOAA nPnnPPP    (3.1) 

By the rotation with the axis ON  and angle n/2 , the restricted expected value E L| ( 32OAAP ) is 

equal to E L| (
21OAAP

), and so on. Therefore, taking the expectation of Equation (3.1), the 

linearity of expectation implies that 
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 n E L| (
21OAAP
) .2   (3.2) 

Equation (3.2) shows that E L| ( AOBP
)= AOB  in the case of nAOB /2 .  

In a similar way, we can prove that E L| ( AOBP
)= AOB  in the case of qAOB  where q  is 

a rational number less than 1. 

Finally, it is clear that the expected value E L| ( AOBP
) is a continuous and monotone increasing 

function of the size of AOB . Therefore, we can prove that E L| ( AOBP
)= AOB  in the case of 

rAOB  where r  is a real number less than 1. We have completed the proof of Theorem 3.1.  

 

Theorem 3.1 indicates that when we observe an angle from several viewpoints, each chosen at 

random, the average visual size is approximately equal to the true size.  

 

4. Conclusions    
We see various angles in our daily lives, however, we are usually unconscious of their appearances. 

We started our discussion from the appearance, that is, the visual angle. The visual angle naturally 

introduces us some algebraic curves on the unit sphere. These curves have several interesting 

geometric properties. Furthermore, we have seen that the visual angle has a stochastic property. In 

[2] and [6], visual angles of several geometric shapes (rectangle, orthogonal axes and cube) are 

investigated. In addition, visual angle is extended to visual solid angle in the four dimensional 

Euclidean space R
4
 ([4]). In this way, visual angle gives us various interests in mathematics.  
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